

Experiment No. 6: Analog-to-Digital (A/D) and
Digital-to-Analog (D/A) Conversion Interfacing

1. Aim
To understand the principles and practical implementation of Analog-to-Digital (A/D)
and Digital-to-Analog (D/A) conversion, and to interface these converters with a
microprocessor (e.g., 8085/8086) to perform data conversion operations.

2. Objectives
Upon completion of this experiment, the student will be able to:

● Explain the concepts of D/A and A/D conversion and their parameters
(resolution, accuracy, conversion time, full-scale voltage).

● Understand the internal working principles of common DAC (e.g., DAC0808)
and ADC (e.g., ADC0804) ICs.

● Design and implement interfacing schematics for DAC and ADC with a
microprocessor.

● Write assembly language programs to generate analog outputs using a DAC.
● Write assembly language programs to read analog inputs using an ADC and

display the digital values.
● Observe and analyze the generated analog waveforms and converted digital

readings.

3. Theory
The real world is predominantly analog, characterized by continuous signals (e.g.,
temperature, pressure, sound). Microprocessors, however, operate on digital signals
(discrete binary values). Analog-to-Digital (A/D) converters and Digital-to-Analog (D/A)
converters are essential interface components that bridge this gap, enabling
microprocessors to interact with the analog world.

3.1. Digital-to-Analog (D/A) Conversion

A DAC converts a digital input code (binary) into a proportional analog output voltage
or current.

● Resolution: The smallest change in analog output for a 1-bit change in the
digital input. For an N-bit DAC, the number of discrete steps is 2N.

○ Resolution (Voltage) = Full Scale Output Voltage / 2N
● Full Scale Output Voltage (V_FS): The maximum analog output voltage the DAC

can produce.
● Reference Voltage (V_REF): An external stable voltage source used by the DAC

to determine its output range.
● Output Voltage (V_OUT) Calculation:

○ For a unipolar DAC (0 to V_FS):
V_OUT = Digital Input Value (decimal) * (V_FS / 2N)
or
V_OUT = Digital Input Value (decimal) * Resolution (Voltage)

○ Example: For an 8-bit DAC with V_REF = 5V (resulting in V_FS = 5V if
correctly configured) and digital input 80H (128 decimal):
Resolution = 5V / 28 = 5V / 256 = 0.01953125 V/step
V_OUT = 128 * (5V / 256) = 128 * 0.01953125V = 2.5V

DAC0808 (8-bit Digital-to-Analog Converter):

The DAC0808 is a popular 8-bit monolithic multiplying DAC.

● Input Pins: D0-D7 (Digital Data Inputs), V_REF+ / V_REF- (Reference Voltage
Inputs), Compensation (for internal op-amp stabilization).

● Output Pins: I_OUT (Current Output), I_OUT (Complementary Current Output).
A resistor and an external op-amp (Current-to-Voltage converter) are typically
used to convert the output current into a measurable voltage.

● Control Pins: Usually no separate control pins for simple write operations; it's
always ready to convert. The analog output changes immediately when the
digital input lines change.

3.2. Analog-to-Digital (A/D) Conversion

An ADC converts an analog input voltage into a proportional digital output code.

● Resolution: The smallest analog voltage change that causes a 1-bit change in
the digital output.

○ Resolution (Voltage) = (V_MAX - V_MIN) / 2N (where V_MAX and V_MIN
define the input range).

● Conversion Time: The time taken by the ADC to convert an analog input into a
digital output.

● Full Scale Voltage (V_REF or V_MAX): The maximum analog input voltage the
ADC can convert.

● Digital Output Value Calculation:
○ Digital Output (decimal) = Analog Input Voltage * (2N / V_REF)
○ Example: For an 8-bit ADC with V_REF = 5V and analog input 2.5V:

Resolution = 5V / 28 = 5V / 256 = 0.01953125 V/step
Digital Output (decimal) = 2.5V / (5V / 256) = 2.5V / 0.01953125 = 128
(approx.)
So, 80H.

ADC0804 (8-bit Analog-to-Digital Converter):

The ADC0804 is a commonly used 8-bit successive approximation ADC.

● Input Pins: VIN+ / VIN- (Analog Voltage Input), V_REF/2 (Reference Voltage
Input), CLK R / CLK IN (Clock Resistor / Clock Input for internal or external
clock).

● Output Pins: D0-D7 (Digital Data Outputs).
● Control Pins:

1. overlineCS (Chip Select): Active low, enables the chip.
2. overlineRD (Read): Active low, enables output buffers to place data on

data bus.
3. overlineWR (Write): Active low, initiates a conversion.
4. INTR (Interrupt): Active low output, goes low when conversion is

complete.
5. CLK R: For internal clock, a resistor and capacitor are connected to this

pin.
● Conversion Process:

1. Microprocessor sends a overlineCS low and overlineWR low pulse to
start conversion.

2. The ADC converts the analog input. During conversion, INTR is high.
3. When conversion is complete, INTR goes low.
4. Microprocessor detects INTR low, then sends overlineCS low and

overlineRD low pulse to read the converted digital data from D0-D7.

3.3. Interfacing with Microprocessor (8085/8086)

Interfacing ADCs and DACs with a microprocessor involves connecting their data
lines to the microprocessor's data bus, control lines to I/O or control signals, and
address decoding logic (for I/O mapped I/O).

● I/O Mapped I/O: DAC and ADC chips are treated as I/O ports. They are
accessed using OUT (for DAC) and IN (for ADC) instructions, and their Chip
Select is generated using I/O address decoding, which typically involves the
IO/overlineM signal being high.

4. Materials Required
● Microprocessor Trainer Kit (8085 or 8086 based)
● DAC0808 (8-bit Digital-to-Analog Converter) IC
● ADC0804 (8-bit Analog-to-Digital Converter) IC
● LM741 or similar Op-Amp IC (for DAC0808 current-to-voltage conversion)
● Resistors: 10k Ohm, 5k Ohm, 1k Ohm, 220 Ohm (for DAC/ADC specific

configurations)
● Capacitors: 150 pF (for ADC0804 internal clock)
● Potentiometer (e.g., 10k Ohm - for variable analog input to ADC)
● LEDs (8 for digital output display)
● Oscilloscope (for observing DAC output waveforms)
● Digital Voltmeter (DVM) / Multimeter (for measuring analog voltages)
● Connecting Wires/Jumper Cables
● Breadboard (if not using a dedicated trainer kit interface)
● DC Power Supply (+5V, -5V, +12V as required by ICs)

5. Procedure
Part A: DAC0808 Interfacing and Waveform Generation

1. Interfacing Schematic for DAC0808:
○ Connect DAC0808 D0-D7 to the microprocessor's D0-D7 data bus.
○ Connect the V_REF+ pin to +5V (or desired reference voltage).
○ Connect the V_REF- pin to ground.
○ Connect the Power Supply pins: VCC to +5V, VEE to -5V (or ground if

using single supply mode).
○ Connect I_OUT to an external current-to-voltage converter circuit using

an op-amp (e.g., LM741) and a feedback resistor. A common
configuration uses a 5k Ohm feedback resistor with V_REF = +5V.

■ Output Voltage (V_OUT_OPAMP) = -I_OUT * R_F (where I_OUT is
the DAC current output and R_F is the feedback resistor).

■ I_OUT = I_REF * (Digital Input / 256) where I_REF = V_REF /
R_REF (R_REF is often an internal resistor or an external resistor
on V_REF pin). For DAC0808, I_REF = V_REF / 10k Ohm.

■ So, V_OUT_OPAMP = - (V_REF / 10k Ohm) * (Digital Input / 256) *
R_F.

■ If V_REF = 5V and R_F = 5k Ohm, V_OUT_OPAMP = - (5V / 10k) *
(Digital Input / 256) * 5k = - (0.5mA) * (Digital Input / 256) * 5k = -
(2.5 * Digital Input / 256).

■ To get positive voltage, either invert the op-amp output or use
I_OUT (complementary output) with an op-amp. Most trainers
have internal op-amps for DAC.

○ I/O Address Decoding: Design a simple I/O address decoder to generate
a Chip Select (overlineCS) for the DAC. For example, assign DAC to I/O
address 40H.

■ Connect A6 of 8085/8086 to a gate, and combine with
IO/overlineM (high) and overlineRD (high, as it's a write
operation) to create overlineCS.

■ For 8085: Use A6 and IO/overlineM (inverted) through a NAND
gate, and then connect this to the DAC's CS. For a fixed port, say
40H, use A6=1, A5=0, A4=0, A3=0, A2=0, A1=0, A0=0. A simple
decode could be A6 ORed with inverters of lower address lines.
For simplicity, many trainers connect a DAC to a fixed port, say
40H, without complex external decoding. We'll assume a port
address.

2. Assembly Program for Ramp/Staircase Waveform (8085/8086 example):
○ Aim: Generate a linearly increasing analog voltage output (staircase

waveform) by sending incremental digital values to the DAC.
○ Microprocessor: 8085 (example, similar logic for 8086)
○ Port Address: Assume DAC is interfaced at Port 40H.
○ Assembly Code:
○ Code snippet

 ; 8085 Assembly Code for Ramp Waveform Generation
 ORG 0000H

 MVI A, 00H ; Initialize Accumulator with 0
LOOP:
 OUT 40H ; Output A to DAC (Port 40H)
 ; DAC converts this digital value to an analog voltage
 INR A ; Increment A
 JNZ LOOP ; Repeat until A overflows (goes from FFH to 00H)

 HLT ; Halt

○
○
○ Execution and Observation:

■ Connect the DAC's analog output to an oscilloscope.
■ Run the assembly program.
■ Observe the oscilloscope display. A staircase waveform should

be visible, starting from 0V and increasing incrementally up to
the full-scale voltage, then resetting to 0V.

■ Measure the step size and peak voltage to verify DAC operation.

Part B: ADC0804 Interfacing and Digital Display

1. Interfacing Schematic for ADC0804:
○ Connect ADC0804 D0-D7 to the microprocessor's D0-D7 data bus.
○ Connect VIN+ to the output of a potentiometer (variable voltage source,

0-5V). Connect VIN- to ground.
○ Connect V_REF/2 to +2.5V (for a 0-5V input range, V_REF = 5V. If V_REF

is tied to VCC, it sets the max input). Typically, V_REF/2 is connected to
VCC/2 or a dedicated 2.5V source. If V_REF is left open, it defaults to
VCC.

○ Provide a clock source: For internal clock, connect 10k Ohm resistor
between CLK R and CLK IN, and 150 pF capacitor between CLK IN and
ground.

○ Connect Power Supply pins: VCC to +5V, GND to ground.
○ Control Signals:

■ overlineCS (Chip Select): Connect to I/O address decode output
(e.g., Port 41H).

■ overlineRD (Read): Connect to microprocessor's overlineRD
signal (for I/O read).

■ overlineWR (Write): Connect to microprocessor's overlineWR
signal (for I/O write).

■ INTR (Interrupt): Connect to a status bit that the microprocessor
can poll (e.g., a data line from an input port). For simple polling,
connect INTR to D0 or D7 of an input port and read that port.
Alternatively, use a ready pin if the trainer kit has one.

○ Output Display: Connect D0-D7 of the ADC to 8 LEDs with current
limiting resistors, or to an LCD module for display.

2. Assembly Program for ADC Reading and Display (8085/8086 example):
○ Aim: Read analog voltage from potentiometer, convert to digital, and

display on LEDs/LCD.
○ Microprocessor: 8085 (example, similar logic for 8086)
○ Port Addresses: Assume ADC overlineWR is at Port 41H (dummy write

to start conversion), and ADC overlineRD data is at Port 41H (actual
read). Assume INTR is connected to bit D7 of Input Port 42H.

○ Assembly Code:
○ Code snippet

 ; 8085 Assembly Code for ADC Read and Display
 ORG 0000H

 ; Initialize (if necessary, for LCD or LED segment drivers)
 ; For direct LED connection, no special init needed

START_CONVERSION:
 MVI A, 00H ; Dummy data
 OUT 41H ; Send pulse to ADC WR to start conversion.
 ; This OUT instruction asserts WR (low) and selects port 41H
 ; (assuming 41H is decoded for ADC WR)

WAIT_FOR_CONVERSION:
 IN 42H ; Read status of INTR (e.g., from D7 of Port 42H)
 ANI 80H ; Mask all bits except D7 (INTR connected to D7)
 JNZ WAIT_FOR_CONVERSION ; Loop until INTR goes low (D7 becomes 0)
 ; If INTR is active low, it means D7 should be 0.
 ; So, JNZ means "If D7 is NOT 0, keep waiting"

READ_ADC_DATA:
 IN 41H ; Read digital data from ADC (Port 41H)
 ; This IN instruction asserts RD (low) and selects port 41H
 ; (assuming 41H is decoded for ADC RD)
 MOV B, A ; Store the digital value in B register (for observation/display)

 ; Optional: Display B on LEDs or LCD
 ; If LEDs connected directly to data bus for output (e.g., through a latch)
 ; OUT LED_PORT ; Replace LED_PORT with actual output port for LEDs

 HLT ; Halt

 ; Consider a loop to continuously read and display if desired.
 ; JMP START_CONVERSION ; Uncomment for continuous operation

○
○

○ Execution and Observation:
■ Vary the potentiometer connected to VIN+ of the ADC.
■ Observe the LEDs (or LCD). The binary pattern on the LEDs

should change, reflecting the analog voltage from the
potentiometer.

■ Measure the analog input voltage using a DVM and compare it
with the displayed digital output.

■ Numerical Example:
■ If potentiometer is set to 2.5V, and ADC is 8-bit with 5V

V_REF, the expected digital output is 80H (128 decimal).
■ If LEDs are connected to D0-D7, you should see D7

glowing, and all lower bits off.
■ If potentiometer is set to 1.25V, expected digital output is

40H (64 decimal).

6. Observations
Record your observations during the execution of each part.

● Part A: DAC0808 Interfacing
○ Generated Waveform: Describe the shape of the waveform observed on

the oscilloscope (e.g., "staircase increasing linearly").
○ Peak Voltage: Note the maximum voltage reached by the staircase (e.g.,

"Approximately 4.9V for a +5V reference").
○ Step Size: Estimate the voltage change per step (e.g., "Around 19.5 mV

per step").
○ Frequency/Period: Note the approximate period or frequency of the

waveform.
○ Analysis: Confirm that the observed waveform characteristics align with

the theoretical calculations for the DAC.
● Part B: ADC0804 Interfacing

○ Potentiometer Min Position:
■ Analog Input Voltage (DVM reading): [e.g., 0.0V]
■ Digital Output (LEDs/LCD): [e.g., 00H (00000000b)]

○ Potentiometer Mid Position:
■ Analog Input Voltage (DVM reading): [e.g., 2.5V]
■ Digital Output (LEDs/LCD): [e.g., 80H (10000000b)]

○ Potentiometer Max Position:
■ Analog Input Voltage (DVM reading): [e.g., 4.9V]
■ Digital Output (LEDs/LCD): [e.g., FFH (11111111b)]

○ Varying Input: Describe how the digital output changes as the
potentiometer is smoothly rotated from min to max (e.g., "LEDs show
increasing binary counts as voltage increases").

○ Analysis: Verify that the digital output values are proportional to the
analog input voltages, confirming the A/D conversion process. Note any
discrepancies due to resolution or accuracy limitations.

7. Deliverables
1. Explanation of D/A and A/D Conversion Principles: (As covered in Theory,

Sections 3.1 & 3.2, including formulas and parameters).
2. Detailed Interfacing Schematic for DAC0808: Showing connections to

microprocessor data bus, control signals, power, reference, and op-amp circuit
(if used externally). Clearly label all pins and components.

3. Detailed Interfacing Schematic for ADC0804: Showing connections to
microprocessor data bus, control signals, power, reference, clock,
potentiometer, and output display (LEDs/LCD). Clearly label all pins and
components.

4. Assembly Code for DAC Waveform Generation: With comments explaining
each step.

5. Assembly Code for ADC Reading and Display: With comments explaining each
step.

6. Observed Waveform from Oscilloscope (DAC): A sketch or printout of the
staircase/ramp waveform, clearly labeled with voltage and time axes.

7. Tabulated ADC Readings: A table showing at least 5-7 pairs of (Analog Input
Voltage (measured by DVM), Corresponding Digital Output (observed from
LEDs/LCD)).

8. Analysis and Conclusion: Discuss how the observed results match theoretical
expectations and any practical limitations.

8. Conclusion
This experiment provided hands-on experience in interfacing Analog-to-Digital and
Digital-to-Analog converters with a microprocessor. We successfully interfaced a
DAC0808 to generate a staircase analog waveform, observing its characteristics on an
oscilloscope. Subsequently, we interfaced an ADC0804 to convert a variable analog
input from a potentiometer into a digital value, which was then displayed. This
practical exercise reinforced the understanding of A/D and D/A conversion principles,
including resolution and conversion processes, and demonstrated the crucial role of
these converters in enabling microprocessors to interact with real-world analog
signals.

	Experiment No. 6: Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Conversion Interfacing
	1. Aim
	2. Objectives
	3. Theory
	3.1. Digital-to-Analog (D/A) Conversion
	3.2. Analog-to-Digital (A/D) Conversion
	3.3. Interfacing with Microprocessor (8085/8086)

	4. Materials Required
	5. Procedure
	6. Observations
	7. Deliverables
	8. Conclusion

